Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38656346

RESUMO

Despite breakthrough therapeutics in breast cancer, it is one of the main causes of mortality among women worldwide. Thus, drug therapies for treating breast cancer have recently been developed by scientists. Metformin and sorafenib are well-known therapeutics in breast cancer. In the present study, we combined sorafenib and PCL-sorafenib with metformin to improve drug absorption and promote therapeutic efficiency. The MCF-7 cells were treated with metformin, sorafenib, or PCL-sorafenib. The growth inhibitory effect of these drugs and cell viability were assessed using MTT and flow cytometry assays, respectively. The expression of targeted genes involved in cell proliferation, signaling, and the cell cycle was measured by real-time PCR. The results showed that MCF-7 cells treated with metformin/sorafenib and PCL-sorafenib/metformin co-treatment contributed to 50% viability compared to the untreated group. Moreover, PI and Annexin V staining tests showed that the cell viability for metformin/sorafenib and PCL-sorafenib/metformin was 38% and 17%, respectively. Furthermore, sorafenib/metformin and PCL-sorafenib/metformin lead to p53 gene expression increase by which they can increase ROS, thereby decreasing GPX4 gene expression. In addition, they affected the expression of BCL2 and BAX genes and altered the cell cycle. Together, the combination of PCL-sorafenib/metformin and sorafenib/metformin increased sorafenib absorption at lower doses and also led to apoptosis and oxidative stress increases in MCF-7 cells.

3.
Heliyon ; 10(8): e29876, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681609

RESUMO

Without a doubt, cancer and its negative impact on human health have created many hurdles for people across the world since conventional approaches have not offered a reliable ability in the eradication of cancer. As a result, finding novel approaches, like using bimodal nanoparticles as a potential nanocarrier in molecular imaging and cancer therapy, is remarkably required these days. In the present study, ex-situ (Ge) and in-situ (Gi) green synthesized silver (Ag) nanoparticles entrapped in metal-organic framework nanocomposites (NMOF) coated with folic acid (FA) targeted chitosan (CS) was successfully developed as a novel bifunctional nanocarrier for detection and treatment of colon cancer cells. Then nanocarriers, such as NMOF-CS-FA, Ge-Ag@NMOF-CS-FA, Gi-Ag@NMOF-CS-FA, and C-Ag@NMOF-CS-FA, were characterized via FT-IR, DLS, SERS, TEM, and SEM and results have potentially confirmed the quality and quantity of synthesized nanocomposites. The hydrodynamic diameters of NMOF-CS, Ge-Ag@NMOF-CS, Gi-Ag@NMOF-CS, and C-Ag@NMOF-CS specimens were measured at around 99.7 ± 10 nm, 110 ± 10 nm, 118 ± 10 nm, 115 ± 10 nm, respectively. Also, the PDI values less than 0.2 confirm the reliable distribution of these nanocomposites. Afterward, the cell viability assay was conducted on HCT116 and HGF cell lines for evaluating biocompatibility and targeting efficiency of nanocomposites; FA functionalized nanocomposites have intensively indicated better performance in cancer cells targeting and their inhibition, and IC50 was attained for 10 ng/mL of Ge-Ag@NMOF-CS-FA while non-targeted nanocarriers did not have toxicity more than 20 % on HCT116 colon cancer cells. Moreover, according to the results, the cell viability of HGF normal cells was at least 85 % after being exposed to different concentrations of nanocomposites for 24 h. This indicates that the synthesized nanocomposites do not have significant toxic effects on normal cells. The results indicate that this novel nanocomposite has the potential to effectively deliver drugs to cancer cells.

4.
Appl Biochem Biotechnol ; 196(2): 701-716, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37178249

RESUMO

Currently, the high incidence of fungal infections among females has resulted in outstanding problems. Candida species is related with multidrug resistance and destitute clinical consequences. Chitosan-albumin derivatives with more stability exhibit innate antifungal and antibacterial effects that boost the activity of the drug without inflammatory impact. The stability and sustained release of Fluconazole in mucosal tissues can be ensured by encapsulating in protein/polysaccharide nanocomposites. Thus, we developed chitosan-albumin nanocomposite (CS-A) loaded with Fluconazole (Flu) antifungals against vaginal candidiasis. Various ratios of CS/Flu (1:1, 1:2, 2:1) were prepared. Thereafter, the CS-A-Flu nanocomposites were qualified and quantified using FT-IR, DLS, TEM, and SEM analytical devices, and the size range from 60 to 100 nm in diameter was attained for the synthesized nanocarriers. Afterward, the antifungal activity, biofilm reduction potency, and cell viability assay were performed for biomedical evaluation of formulations. The minimum inhibitory concentration) and minimum fungicidal concentration on Candida albicans were attained at 125 ng/µL and 150 ng/µL after treatment with a 1:2 (CS/Flu) ratio of CS-A-Flu. The biofilm reduction assay indicated that biofilm formation was between 0.05 and 0.1% for CS-A-Flu at all ratios. The MTT assay also exhibited excellent biocompatibility for samples, about 7 to 14% toxicity on human HGF normal cells. These data have indicated that CS-A-Flu would be a promising candidate against Candida albicans.


Assuntos
Candidíase Vulvovaginal , Quitosana , Nanocompostos , Feminino , Humanos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Antifúngicos/farmacologia , Quitosana/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Candidíase Vulvovaginal/tratamento farmacológico , Candida albicans , Albuminas/farmacologia , Albuminas/uso terapêutico , Testes de Sensibilidade Microbiana
5.
Chem Biodivers ; 20(9): e202300659, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37548485

RESUMO

Breast cancer is a malignancy that affects mostly females and is among the most lethal types of cancer. The ligand-functionalized nanoparticles used in the nano-drug delivery system offer enormous potential for cancer treatments. This work devised a promising approach to increase drug loading efficacy and produce sustained release of 5-fluorouracil (5-FU) and Ganoderic acid (GA) as model drugs for breast cancer. Chitosan, aptamer, and carbon quantum dot (CS/Apt/COQ) hydrogels were initially synthesized as a pH-sensitive and biocompatible delivery system. Then, CS/Apt/COQ NPs loaded with 5-FU-GA were made using the W/O/W emulsification method. FT-IR, XRD, DLS, zeta potentiometer, and SEM were used to analyze NP's chemical structure, particle size, and shape. Cell viability was measured using MTT assays in vitro using the MCF-7 cell lines. Real-time PCR measured cell apoptotic gene expression. XRD and FT-IR investigations validated nanocarrier production and revealed their crystalline structure and molecular interactions. DLS showed that nanocarriers include NPs with an average size of 250.6 nm and PDI of 0.057. SEM showed their spherical form, and zeta potential studies showed an average surface charge of +37.8 mV. pH 5.4 had a highly effective and prolonged drug release profile, releasing virtually all 5-FU and GA in 48 h. Entrapment efficiency percentages for 5-FU and GA were 84.7±5.2 and 80.2 %±2.3, respectively. The 5-FU-GA-CS-CQD-Apt group induced the highest cell death, with just 57.9 % of the MCF-7 cells surviving following treatment. 5-FU and GA in CS-CQD-Apt enhanced apoptotic induction by flow cytometry. 5-FU-GA-CS-CQD-Apt also elevated Caspase 9 and downregulated Bcl2. Accordingly, the produced NPs may serve as pH-sensitive nano vehicles for the controlled release of 5-FU and GA in treating breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Quitosana , Pontos Quânticos , Feminino , Humanos , Masculino , Fluoruracila/farmacologia , Fluoruracila/química , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123234, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582316

RESUMO

In this study, an aptamer-based, functionalized-DNA hydrogel system is developed for prostate-specific antigen (PSA) detection. A pure DNA hydrogel is constructed using specific DNA building blocks and an aptamer as a cross-linker. Firstly, silver nanoclusters (AgNCs) are constructed on the Y-shaped DNA (Y-DNA) building blocks. Then, the DNA hydrogel was formed via the addition of the cross-linker to the Y-DNA solution. In this case, the fluorescence emission of silver nanoclusters that have accumulated in the hydrogel increases due to aggregation-induced emission (AIE). The presence of PSA and its subsequent interaction with its specific aptamer dissolve the hydrogel structures, which leads to a low emission intensity. A great linear relationship was attained in this assay in the range of 0.05 to 8 ng mL-1 with a detection limit of 4.4 pg mL-1 for the detection of PSA. Additionally, the proposed aptasensor was successfully used to detect PSA in human serum samples. The recovery for different concentrations of PSA was in the range of 96.1% to 99.3%, and the RSD range was from 2.3% to 4.5%. Comparing our method to current ones in the field of PSA detection proves that our platform benefits from a simpler procedure, lower cost, and better efficiency, providing high potential for future clinical applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Masculino , Humanos , Antígeno Prostático Específico , Hidrogéis , Prata/química , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , DNA/química , Limite de Detecção , Nanopartículas Metálicas/química
7.
IET Nanobiotechnol ; 17(5): 450-464, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37309704

RESUMO

Efficient drug delivery systems (DDSs) can potentially replace with conventional modalities in cancer therapy, like liver cancer. In this study, a novel folic acid (FA)-functionalised and alginate (Alg)-modified poly lactic-co-glycolic acid (PLGA) nanocomposite was developed for delivery of doxorubicin (Dox) to HepG2 and Huh7 liver cancer cells. After synthesising the nanocarrier, several analytical devices, including FT-IR, DLS, TGA, and TEM, were employed for its characterisation. Nano-metric size (55 and 85 nm in diameter), close to neutral surface charge, semi-spherical morphology, and successful synthesis were approved. Dox entrapment efficiency was determined near 1%, and sustained and pH-sensitive drug release behaviours of nanocarrier were ascertained for DDS. Afterwards, the cell viability test was carried out to study the HepG2 and Huh7 cells suppression capability of FA-PLGA-Dox-Alg. About 12% and 10% cell viabilities were observed in HepG2 and Huh7 cancer cells after 24 h treatment with 400 nM concentration of FA-PLGA-Dox-Alg nanocarrier respectively. The IC50 value was observed for 100 nM after 24 h of treatment in cancer cells. These data have indicated that fabricated nanocarrier could be promising DDS against liver cancer and replace with conventional approaches in cancer treatment, like chemotherapy.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Glicóis , Ácido Láctico , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Portadores de Fármacos , Liberação Controlada de Fármacos
8.
ACS Appl Bio Mater ; 6(7): 2622-2635, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338424

RESUMO

Biosensors are valuable tools for the detection of biological species, including cells, pathogens, proteins, and other biological molecules. Biosensing devices integrated with microfluidics not only allow for easier sample preparation, portability, and reduced detection time and cost but also offer unique features such as label-free detection and improved sensitivity. Cardiovascular diseases (CVDs), particularly acute myocardial infarction, which is considered one of the main causes of death, are currently diagnosed by electrocardiography (ECG), which has been proven to be inadequate. To overcome the limitations of ECG, the efficient detection of cardiac biomarkers and specifically the measurement of cardiac troponins (cTnT and cTnI) are suggested. This review aims to expound on microfluidics, the most recent materials to develop these devices, and their application in medical diagnosis, particularly in CVD detection. Moreover, we will explore some of the prevalent and last readout methods to investigate in-depth electrochemical label-free detection methods for CVDs, primarily based on voltammetry and electrochemical impedance spectroscopy, with the main focus on structural details.


Assuntos
Técnicas Biossensoriais , Doenças Cardiovasculares , Humanos , Microfluídica , Biomarcadores , Troponina T , Doenças Cardiovasculares/diagnóstico , Técnicas Biossensoriais/métodos
9.
Int Immunopharmacol ; 117: 109960, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012865

RESUMO

Acute lymphoblastic leukemia (ALL) is one of the most prevalent cancers in children and microRNA-128 is amongst the most useful biomarkers not only for diagnosis of ALL, but also for discriminating ALL from acute myeloid leukemia (AML). In this study, a novel electrochemical nanobiosensor based on reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) has been fabricated to detect miRNA-128. Cyclic Voltametery (CV), Square Wave Voltametery (SWV) and Electrochemical Impedance Spectroscopy (EIS) have been applied to characterize the nanobiosensor. Hexacyanoferrate as a label-free and methylene blue as a labeling material were used in the design of the nanobiosensors. It was found that the modified electrode has excellent selectivity and sensitivity to miR-128, with a limit of detection of 0.08761 fM in label-free and 0.00956 fM in labeling assay. Additionally, the examination of real serum samples of ALL and AML patients and control cases confirms that the designed nanobiosensor has the potential to detect and discriminate these two cancers and the control samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Criança , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos
10.
J Cancer Res Clin Oncol ; 149(10): 7779-7791, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37029816

RESUMO

PURPOSE: Epidermal growth factor receptors (EGFRs) are overexpressed in a wide range of tumors and are attractive candidates to target in targeted therapies. This study aimed to introduce a novel radiolabeled compound, 177Lu-cetuximab-PAMAM G4, for the treatment of EGFR-expressing tumors. METHODS: In this study, the cetuximab mAb was bound to PAMAM G4 and labeled with 177Lu via DTPA-CHX chelator. The synthesized nanosystem was confirmed by different analyses such as DLS, FT-IR, TEM, and RT-LC. Cell viability of the radioimmunoconjugate was assessed over the EGFR-expressing cell line of SW480. The biodistribution of 177Lu-Cetuximab-PAMAMG4 was determined in different intervals after injection of the radiolabeled compound in normal and tumoral nude mice via scarification and SPECT images. RESULTS: The average size of PAMAM G4 and PAMAM-Cetuximab-DTPA-CHX nanoparticles were 2 and 70 nm, respectively. 177Lu-Cetuximab-PAMAMG4 was prepared with radiochemical purity of more than 98%. The survival rates of SW480 cells at 24, 48, and 72 h post-treatment with177Lu-Cetuximab-PAMAMG4 (500 nM) were 18%, 15%, and 14%, respectively. The biodistribution studies showed a significant accumulation of 177Lu-Cetuximab-PAMAM in the EGFR-expressing tumor. CONCLUSION: According to the results, this new agent can be considered as an efficient therapeutic complex for tumors expressing EGFR receptors.


Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Cetuximab , Medicina de Precisão , Imunoconjugados/metabolismo , Distribuição Tecidual , Camundongos Nus , Espectroscopia de Infravermelho com Transformada de Fourier , Receptores ErbB/metabolismo , Ácido Pentético/química , Linhagem Celular Tumoral
11.
ACS Appl Bio Mater ; 6(4): 1323-1338, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921253

RESUMO

Cancer diagnosis and treatment are the most critical challenges in modern medicine. Conventional cancer treatments no longer meet the needs of the health field due to the high rate of mutations and epigenetic factors that have caused drug resistance in tumor cells. Hence, the search for unique methods and factors is quickly expanding. The development of nanotechnology in medicine and the search for a system to integrate treatment and diagnosis to achieve an effective approach to overcome the known limitations of conventional treatment methods have led to the emergence of theranostic nanoparticles and nanosystems based on these nanoparticles. An influential group of these nanoparticles is carbon-based theranostic nanoparticles. These nanoparticles have received significant attention due to their unique properties, such as electrical conductivity, high strength, excellent surface chemistry, and wide range of structural diversity (graphene, nanodiamond, carbon quantum dots, fullerenes, carbon nanotubes, and carbon nanohorns). These nanoparticles were widely used in various fields, such as tissue engineering, drug delivery, imaging, and biosensors. In this review, we discuss in detail the recent features and advances in carbon-based theranostic nanoparticles and the advanced and diverse strategies used to treat diseases with these nanoparticles.


Assuntos
Nanopartículas , Nanotubos de Carbono , Neoplasias , Pontos Quânticos , Medicina de Precisão , Nanotubos de Carbono/química , Nanopartículas/uso terapêutico , Nanopartículas/química , Nanotecnologia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
12.
J Funct Biomater ; 13(4)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36547560

RESUMO

Electrospun nanofibrous constructs based on nanoparticles and biopolymers have recently been used in tissue engineering because of their similarity to the extracellular matrix in nature. In this study, electrospun chitosan-carbon quantum dot-titanium dioxide-graphene oxide (CS-CQD-TiO2-GO) nanofibrous mats were synthesized for use as wound dressings by the electrospinning method. To increase the biodegradation rate and water resistance, the fabricated nanofibrous mats were cross-linked. SEM images showed a uniform and coherent structure of CS-CQD-TiO2-GO nanocomposites and CS-CQD-TiO2-GO electrospun nanofibers mats. FTIR analysis, XRD pattern, SEM mapping, and EDS spectrum demonstrate the accuracy of the synthesis as well as the elemental and chemical structure of the nanofibrous mat. The water contact angle indicated that the nanofibrous mat had a hydrophilic property, which is essential for controlling wound exudates. The tensile strength and elongation tests showed that the nanofibrous mat has suitable mechanical properties for wound dressing, including significant flexibility and strength. Interestingly, antimicrobial testing illustrated that the fabricated nanofibrous mat had antibacterial activity against Gram-negative and Gram-positive bacteria. Appropriate cell viability and cytocompatibility of treated mouse fibroblast NIH3T3 cells with the nanofibrous mat were determined using an MTT assay. The animal study results confirmed the proper potential of the nanofibrous mat in wound dressing applications.

13.
Mol Biol Rep ; 49(10): 9345-9354, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988103

RESUMO

BACKGROUND: Continuing hyperglycemia causes and exacerbate oxidative stress. Betanin as the principal pigment of red beet root has antioxidant, anti-inflammatory, and anti-diabetic properties. The purpose of this study was to investigate the potency of betanin on antioxidant defense in STZ-induced diabetic rats' livers. METHODS: STZ at a single dose of 60 mg/kg body weight was intraperitoneally injected and betanin (10, 20, and 40 mg/kg/day) was administered orally for 28 days. Malondialdehyde (MDA), total antioxidant capacity (TAC), protein carbonyl (PC) levels, and the enzyme activity of superoxide dismutase (SOD), catalases and glutathione peroxidases (GPx) were evaluated in the liver. Furthermore, gene expression of Nrf2 and mentioned antioxidant enzymes were measured by Real-time PCR. RESULTS: Betanin (10 and 20 mg/kg) significantly reduced PC levels and increased antioxidant enzyme activity in diabetic rats compared to the control diabetic group (P < 0.01). In comparison to the diabetic control group, all studied genes expression in diabetic rats were increased significantly with betanin at doses of 10 and 20 mg/kg (P < 0.02). The increase in gene expression at 20 mg/kg of betanin was significantly stronger than others (P < 0.015) except for the catalase (P = 0.201), that was almost the same. Moreover, treatment of diabetic rats with 20 mg/kg of betanin could significantly increase TAC levels (P < 0.05) and decrease MDA levels (P < 0.001) compared to diabetic control group. CONCLUSIONS: Betanin could increase the antioxidant capacity of liver tissue associated with the Nrf2-mediated pathway in a dose-dependent manner.


Assuntos
Betacianinas , Diabetes Mellitus Experimental , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Betacianinas/metabolismo , Betacianinas/farmacologia , Catalase/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos , Transdução de Sinais , Superóxido Dismutase/metabolismo
14.
Biomed Eng Lett ; 12(3): 317-329, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35892030

RESUMO

Abstract: Breast cancer due to its high incidence and mortality is the second leading cause of death among females. On the other hand, nanoparticle-based drug delivery is one of the most promising approaches in cancer therapy, nowadays. Hence, margetuximab- and polyethylene glycol-conjugated PAMAM G4 dendrimers were efficiently synthesized for targeted delivery of quercetin (therapeutic agent) to MDA-MB-231 breast cancer cells. Synthesized nano-complexes were characterized using analytical devices such as FT-IR, TGA, DLS, Zeta potential analyzer, and TEM. The size less than 40 nm, - 18.8 mV surface charge, efficient drug loading capacity (21.48%), and controlled drug release (about 45% of drug release normal pH after 8 h) were determined for the nano-complex. In the biomedical test, the cell viability was obtained 14.67% at 24 h of post-treatment for 800 nM concentration, and IC50 was ascertained at 100 nM for the nano-complex. The expression of apoptotic Bax and Caspase9 genes was increased by more than eightfolds and more than fivefolds after treatment with an optimal concentration of nanocarrier. Also, more than threefolds of cell cycle arrest was observed at the optimal concentration synthetics, and 27.5% breast cancer cell apoptosis was detected after treatment with 100 nM nano-complex. These outputs have been indicating the potential capacity of synthesized nano-complex in inhibiting the growth of breast cancer cells.

15.
J Cancer Res Ther ; 18(1): 158-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381778

RESUMO

Context: Targeting MUC1 antigens which are overexpressed in 80% of breast cancers can be widely used in the field of radioimmunoscintigraphy (RIS) of breast cancer. Aims: The aim of this study was to develop a new diagnostic labeled compound for breast cancer RIS. Settings and Design: In this study, an efficient indirect labeling method of PR81 with Indium-111 was developed and preliminary preclinical qualifications were reported. Subjects and Methods: 111In-DTPA-PR81 was prepared and its radiochemical purity and stabilities in human serum and in phosphate-buffered saline (PBS) buffer were surveyed. Furthermore, cellular studies including complex reactivity, binding specificity, cell toxicity, etc., were examined. Finally, biodistribution and scintigraphy of the complex were studied in normal and tumoral animals. Statistical Analysis Used: Statistical analyses were performed using SPSS 10.0. Results: 111In-DTPA-PR81 was prepared with a radiochemical purity of >99% at optimized conditions. Stability studies showed the radiochemical purity of >90% in PBS buffer after 96 h, while the stability in human serum showed decrement to 81% after 96 h. Reactivity of the complex with MUC1 was significantly (P < 0.005) higher than bovine serum albumin (BSA) (about 7-8 times), even though BSA concentration was about twice the MUC1. The binding specificity of the complex to the MUC1 antigen was confirmed by means of immunoreactivity assay. Cell toxicity examination showed no significant lethal effect of the radiolabeled compound on the cells. Biodistribution studies of the complex in normal rats were consistent with the biodistribution of antibodies and high accumulation was observed in the tissues expressing MUC1 antigen. The results of 111In-DTPA-PR81 scintigraphy in tumoral female BALB/c mice at 24 and 48 h after injection showed an increasement of the accumulation in the tumor site. Conclusions: 111In-DTPA-PR81 can be considered as a potential agent for imaging of the MUC1 +breast tumors.


Assuntos
Neoplasias da Mama , Imunoconjugados , Animais , Anticorpos Monoclonais/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Ácido Pentético , Ratos , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
16.
Nanotechnology ; 33(5)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649232

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is the principal enzyme in the pentose phosphate pathway that plays a fundamental role in the production of nicotinamide adenine dinucleotide phosphate, which is very important in preventing the oxidation of cells, especially red blood cells. This enzyme deficiency was associated with many disorders, the most common of which were hemolysis episodes. In the last decade, nanoparticles have been used to design optical and electronic sensors due to their unique properties. This report presents a new colorimetric method that used silver nanoparticles to detect glucose 6-phosphate dehydrogenase activity directly. The glucose-6-phosphate dehydrogenase detection mechanism was based on an aggregation of silver nanoparticles, leading to increased nanoparticle size, which causes discoloration. In the presence of the enzyme, the color of the solution was yellow, and when the enzyme was not present, the color of the solution was grayish. Utilizing this method, colorimetric sensing of glucose 6-phosphate dehydrogenase was gained with a detection limit of 0.009 U ml-1and a linear range of 0-16.0 U ml-1. In this way, the presence or absence of the enzyme can be easily detected with the naked eye during one step.


Assuntos
Colorimetria/métodos , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase , Nanopartículas Metálicas/química , Prata/química , Ensaios Enzimáticos/métodos , Glucosefosfato Desidrogenase/sangue , Glucosefosfato Desidrogenase/metabolismo , Humanos , NADP/metabolismo
17.
J Labelled Comp Radiopharm ; 64(4): 168-180, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33269473

RESUMO

In this study, [111 In]In-DOTA-PR81 was developed, and its preliminary preclinical qualifications were assessed for single photon emission computed tomography (SPECT) imaging of breast cancer. DOTA-NHS-ester was practiced and successively purified by molecular filtration. The chelate:mAb ratio was determined by spectrophotometry. DOTA-PR81 was radiolabeled with In-111 and its radiochemical yield, in vitro stability, in vitro internalization, and immunoreactivity tests were performed. SPECT imaging and tissue counting were applied to evaluate the tissue distribution of [111 In]In-DOTA-hIgG and [111 In]In-DOTA-PR81 in BALB/c mice bearing breast tumors. The radiochemical yield of [111 In]In-DOTA-PR81 complex was >95.0 ± 0.5% (ITLC), and the specific activity was 170 ± 44 MBq/mg. Conjugation reaction resulted in the average number of chelators attached to a mAb (c/a) of 3.4 ± 0.3:1. The radioimmunoconjugate showed immunoreactivity towards MCF7 cell line and MUC1 antigen while its significant in vitro and in vivo stability were investigated over 48 h, respectively (93.0 ± 1.2% in phosphate-buffered saline (PBS) and 84.0 ± 1.3% in human serum). The peak concentration of internalized activity of [111 In]In-DOTA-PR81 was between 4 to 6 h. In comparison with control probes, the complex was accumulated with high specificity and sensitivity at the tumor site. Achieved results indicated that [111 In]In-DOTA-PR81 could be contemplated as an appropriate radiotracer for prognostic imaging of antigens in oncology.


Assuntos
Imunoconjugados/química , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Mucina-1/imunologia , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Radioisótopos de Índio/química , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organometálicos/química , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/síntese química , Distribuição Tecidual
18.
Int J Nanomedicine ; 15: 4471-4481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606689

RESUMO

BACKGROUND: Ineffective integration has been recognized as one of the major causes of early orthopedic failure of titanium-based implants. One strategy to address this problem is to develop modified titanium surfaces that promote osteoblast differentiation. This study explored titanium surfaces modified with TiO2 nanotubes (TiO2 NTs) capable of localized drug delivery into bone and enhanced osteoblast cell differentiation. MATERIALS AND METHODS: Briefly, TiO2 NTs were subjected to anodic oxidation and loaded with Metformin, a widely used diabetes drug. To create surfaces with sustainable drug-eluting characteristics, TiO2 NTs were spin coated with a thin layer of chitosan. The surfaces were characterized via scanning electron microscopy, atomic force microscopy, and contact angle measurements. The surfaces were then exposed to mesenchymal bone marrow stem cells (MSCs) to evaluate cell adhesion, growth, differentiation, and morphology on the modified surfaces. RESULTS: A noticeable increase in drug release time (3 days vs 20 days) and a decrease in burst release characteristics (85% to 7%) was observed in coated samples as compared to uncoated samples, respectively. Chitosan-coated TiO2 NTs exhibited a considerable enhancement in cell adhesion, proliferation, and genetic expression of type I collagen, and alkaline phosphatase activity as compared to uncoated TiO2 NTs. CONCLUSION: TiO2 NT surfaces with a chitosan coating are capable of delivering Metformin to a bone site over a sustained period of time with the potential to enhance MSCs cell attachment, proliferation, and differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana/química , Liberação Controlada de Fármacos , Metformina/farmacologia , Nanotubos/química , Osteoblastos/citologia , Titânio/química , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanotubos/ultraestrutura , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Osteogênese/efeitos dos fármacos , Ratos Wistar , Molhabilidade
19.
Biomed Microdevices ; 22(2): 31, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32335724

RESUMO

Dendrimer-based targeted drug delivery, as an innovative polymeric drug-delivery system, is promising for cancer therapy. Folate receptors (FR) are overexpressed in many types of tumor cells, such as breast cell carcinomas, which allow folate-targeted delivery. Therefor polyethylene glycol (PEG) modified-PAMAM G4 dendrimers were functionalized with folic acid (FA), as targeting agent. Then, 5-FU (5-fluorouracil) and 99mTc (technetium-99 m) as therapeutic agents were respectively loaded and conjugated to previous nano-complex (PEG-PAMAM G4-FA-5FU-99mTc). The value of drug loading was calculated by TGA analysis (16.97%). Drug release profiles of PEG-PAMAM G4-FA-5FU-99mTc and PEG-PAMAM G4-FA-5FU were evaluated. The radiochemical purity of PEG-PAMAM G4-FA-5FU-99mTc and PEG-PAMAM G4-FA-99mTc was obtained at >95% with excellent in-vitro and in-vivo stabilities. PEG-PAMAM G4-FA-5FU-99mTc was synthesized and the stability studies were carried out by the ITLC methods in serum (86.67% and 83.75%) and PBS. Combinational therapy effects of 5-FU and 99mTc containing nano-complexes were evaluated on 4 T1 (mouse breast cancer) and MDA-MB-231 (human breast adenocarcinoma) cancer cell lines. Excellent uptake values were obtained for FA-decorated nano-complexes on 4 T1 and MDA-MB-231 cell lines. Subsequently, tumor inhibition effects of PEG-PAMAM G4-FA-5FU-99mTc and PEG-PAMAM G4-FA-5FU were evaluated using the breast tumor-bearing BALB/C mice. Graphical abstract Breast Tumor Targeting with PAMAM-PEG-5FU- 99mTc As a New Therapeutic Nanocomplex: in In-vitro and In-vivo Studies was presented. This targeted drug delivery system can significantly increase the efficiency of cancer therapy, and reduce the treatment cost and time.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dendrímeros/química , Fluoruracila/química , Terapia de Alvo Molecular/métodos , Nanomedicina/métodos , Polietilenoglicóis/química , Tecnécio/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
20.
Carbohydr Polym ; 229: 115551, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826469

RESUMO

The field of cartilage tissue engineering has been evolved in the last decade and a myriad of scaffolding biomaterials and bioactive agents have been proposed. Controlled release of growth factors encapsulated in the polymeric nanomaterials has been of interest notably for the repair of damaged articular cartilage. Here, we proposed an on-chip hydrodynamic flow focusing microfluidic approach for synthesis of alginate nanogels loaded with the transforming growth factor beta 3 (TGF-ß3) through an ionic gelation method in order to achieve precise release profile of these bioactive agents during chondrogenic differentiation of mesenchymal stem cells (MSCs). Alginate nanogels with adjustable sizes were synthesized by fine-tuning the flow rate ratio (FRR) in the microfluidic device consisting of cross-junction microchannels. The result of present study showed that the proposed approach can be a promising tool to synthesize bioactive -loaded polymeric nanogels for applications in drug delivery and tissue engineering.


Assuntos
Alginatos/química , Microfluídica , Nanogéis/química , Fator de Crescimento Transformador beta3/química , Adulto , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanogéis/toxicidade , Tamanho da Partícula , Fator de Crescimento Transformador beta3/metabolismo , Fator de Crescimento Transformador beta3/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA